Supervised Neighborhoods for Distributed Nonparametric Regression
نویسندگان
چکیده
Techniques for nonparametric regression based on fitting small-scale local models at prediction time have long been studied in statistics and pattern recognition, but have received less attention in modern large-scale machine learning applications. In practice, such methods are generally applied to lowdimensional problems, but may falter with high-dimensional predictors if they use a Euclidean distance-based kernel. We propose a new method, Silo, for fitting predictiontime local models that uses supervised neighborhoods that adapt to the local shape of the regression surface. To learn such neighborhoods, we use a weight function between points derived from random forests. We prove the consistency of Silo, and demonstrate through simulations and real data that our method works well in both the serial and distributed settings. In the latter case, Silo learns the weighting function in a divide-andconquer manner, entirely avoiding communication at training time.
منابع مشابه
Discriminant Analysis for Fuzzy Random Variables Based on Nonparametric Regression
This communication is concerned with the problem of supervised classification of fuzzy data obtained from a random experiment. The data generation process is modelled through fuzzy random variables which, from a formal point of view, can be identified with a kind of functional random element. We propose to adapt one of the most versatile discriminant approaches in the context of functional data...
متن کاملA New Nonparametric Regression for Longitudinal Data
In many area of medical research, a relation analysis between one response variable and some explanatory variables is desirable. Regression is the most common tool in this situation. If we have some assumptions for such normality for response variable, we could use it. In this paper we propose a nonparametric regression that does not have normality assumption for response variable and we focus ...
متن کاملWavelets for Nonparametric Stochastic Regression with Pairwise Negative Quadrant Dependent Random Variables
We propose a wavelet based stochastic regression function estimator for the estimation of the regression function for a sequence of pairwise negative quadrant dependent random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator are investigated. It is found that the estimators have similar properties to their counterparts st...
متن کاملNonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...
متن کاملTesting additivity in nonparametric regression under random censorship
In this paper, we are concerned with nonparametric estimation of the multivariate regression function in the presence of right censored data. More precisely, we propose a statistic that is shown to be asymptotically normally distributed under the additive assumption, and that could be used to test for additivity in the censored regression setting.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016